
Minimax detection boundary and sharp 
optimal test for Gaussian graphical models
Yumou Qiu1 and Bin Guo2

1School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, People’s 
Republic of China
2Center of Statistical Research, School of Statistics, Southwestern University of Finance and Economics, 
Chengdu, People’s Republic of China
Address for correspondence: Yumou Qiu, School of Mathematical Sciences and Center for Statistical Science, Peking 
University, Beijing 100871, People’s Republic of China. Email: qiuyumou@math.pku.edu.cn

Abstract
In this article, we derive the minimax detection boundary for testing a sub-block of variables in a precision matrix 
under the Gaussian distribution. Compared to the results on the minimum rate of signals for testing precision 
matrices in literature, our result gives the exact minimum signal strength in a precision matrix that can be 
detected. We propose a thresholding test that is able to achieve the minimax detection boundary under 
certain cases by adaptively choosing the threshold level. The asymptotic distribution of the thresholding 
statistic for precision matrices is derived. Power analysis is conducted to show the proposed test is powerful 
against sparse and weak signals, which cannot be detected by the existing Lmax and L2 tests. Simulation 
studies show the proposed test has an accurate size around the nominal level and is more powerful than the 
existing tests for detecting sparse and weak signals in precision matrices. Real data analysis on brain 
imaging data is carried out to illustrate the utility of the proposed test in practice, which reveals functional 
connectivity between brain regions for Alzheimer’s disease patients and normal healthy people.
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1 Introduction
Precision matrix, which is the inverse of the covariance matrix, plays an important role in multi
variate analysis, for example, Hotelling’s mean test and Fisher’s discriminant analysis (Anderson, 
2003). It provides a measure for conditional dependence among variables. Under the multivariate 
Gaussian distribution, the precision coefficient between two variables being zero is equivalent to 
conditional independence between those variables. Therefore, for Gaussian graphical models, the 
support of the precision matrix provides a graphical representation of the conditional dependence 
network. See applications of precision matrices in genomics to identify interactions between genes 
and pathways (Wang & Huang, 2014), and in neuroscience to study brain connectivity (Huang 
et al., 2010).

Classical estimation of precision matrices is by inverting sample covariance matrices. However, 
when the sample size n is smaller than the dimension p, this classical estimator no longer exists as 
the sample covariance matrix is not invertible. Penalization methods have been developed for es
timating a high-dimensional precision matrix by utilizing its sparsity structure. Meinshausen and 
Bühlmann (2006) considered to estimate nonzero coefficients in nodewise regressions. Yuan and 
Lin (2007) and Friedman et al. (2008) proposed the graphical lasso estimation via a penalized 
likelihood method. Yuan (2010) and Cai et al. (2011) developed constraint L1 minimization 
approaches. Also see Liu et al. (2012), Lafferty et al. (2012), and Xue and Zou (2012) for penal
ized estimation of precision matrices under the nonparanormal model.
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Several recent methods have also been proposed for the inference of each element in a high- 
dimensional precision matrix. Liu (2013) constructed a multiple testing procedure for detecting 
nonzero precision coefficients based on residuals from nodewise regressions. Ren et al. (2015) de
veloped a confidence interval for each precision coefficient based on residuals from pairwise re
gressions. Ren et al. (2019) considered the inference problem of multiple precision matrices 
from several groups. Qiu and Zhou (2020, 2022) proposed multiple testing procedures for partial 
correlations with application to brain connectivity studies under independent and time series data, 
respectively.

For the global tests of precision matrices, Xia et al. (2015) proposed a maximum type test 
(Lmax-test) for the equality of two precision matrices together with a multiple testing procedure 
to identify different precision coefficients between the two samples. Chang et al. (2018) developed 
the Gaussian approximation result for the maximum statistic on precision matrices under time- 
dependent data. Xia et al. (2018) proposed an L2 type test for sub-matrices with finite size being 
zero in a high-dimensional precision matrix. Particularly, Xia et al. (2015) showed that 
{( log p)/n}1/2 is the minimum rate of signals that can be detected, where n and p denote the sample 
size and dimension, respectively. Namely, there exists a positive constant c̃0 such that no test is uni
formly powerful over all precision matrices with minimum signal larger than c̃0{( log p)/n}1/2. 
However, this result only provides the minimum rate of signals that can be detected. The expression 
of the constant ̃c0 and its relationship with signal sparsity are unknown. For testing means, Donoho 
and Jin (2004) showed that the L2 and Lmax type tests may have no power in detecting sparse and 
weak signals. More powerful tests for precision matrices need to be developed.

In this article, we consider the problem of testing sub-blocks of a high-dimensional precision ma
trix being zero. Under the Gaussian distribution, the null hypothesis implies conditional independ
ence among the variables in this sub-block. We first derive the minimax detection boundary for 
testing precision matrices that gives the explicit expression of the signal strength as a function of 
signal sparsity that can possibly be detected by a testing procedure. No test can be uniformly power
ful if the signal strength and sparsity parameters fall under the detection boundary. Compared to 
the results on minimum rate of signals for testing precision matrices (Xia et al., 2015), our result 
gives the exact minimum signal strength in a precision matrix that can be detected. Second, we con
struct a thresholding test for precision matrices with an adaptively chosen threshold level to maxi
mize its power. Essentially, the proposed test utilizes multiple threshold levels and chooses the one 
that is the most significant. This is in the same spirit as the Higher Criticism (HC) tests for means 
(Donoho & Jin, 2004; Hall & Jin, 2010; Zhong et al., 2013) and fixed-dimensional regression co
efficients (Qiu et al., 2018). We show that under certain constraints on the sample size, dimension 
and the size of the sub-block to be tested, the power of the proposed thresholding test converges to 1 
as long as the signal strength and sparsity are above the detection boundary. In this sense, the de
rived minimax detection boundary is tight, and the proposed test is sharp optimal. Simulation stud
ies show the proposed test has an accurate size around the nominal level under various settings, and 
it is more powerful than the Lmax and L2 tests for detecting sparse and weak signals in precision 
matrices. The proposed method is applied to a brain imaging data set, which reveals functional con
nectivity between brain regions for Alzheimer’s disease patients and normal healthy people.

Two main contributions of this work are to derive the minimax detection boundary for signal 
detection in high-dimensional precision matrices and to show that the proposed multi-level thresh
olding test for precision matrices can attain this detection boundary. Both results are new in the 
literature and imply the phrase transition property of testing precision matrices. Those two prob
lems are quite challenging and are not direct extensions of the existing detection boundary and 
higher criticism results for testing means and parameters in fixed-dimensional models (Donoho 
& Jin, 2004, 2015; Hall & Jin, 2010; Qiu et al., 2018; Zhong et al., 2013). First, compared to 
the results on the minimax rate of signal detection, deriving the detection boundary for precision 
matrices requires a more delicate analysis and tight bounds for the moments of the likelihood ratio 
function. To our knowledge, there is no related work in literature. We have developed a new tech
nique based on counting the cyclic and acyclic paths in the graphs formed by perfect matching. 
Second, compared to the existing works, analysing the asymptotic properties of the thresholding 
statistic on the debiased estimates of precision coefficients is much more difficult than that on sam
ple means. It requires careful control of small order terms, moderate deviation results of the de
biased estimates, and handling the complex dependence among the estimated entries in the 
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same row and column of the precision matrix. Note that the estimates in the same row or the same 
column share common variables. We have successfully tackled those challenges and derived the 
asymptotic properties and detection boundary of the proposed test.

The article is organized as follows. Section 2 introduces the background, the hypotheses of inter
est and the application examples. Section 3 establishes the minimax detection boundary for testing 
precision matrices. Section 4 constructs the proposed multi-level thresholding test. Section 5 states 
the asymptotic results for the proposed test statistic under the null hypotheses. Section 6 studies the 
power of the proposed test, and shows it can achieve the minimax detection boundary derived in 
Section 3 under certain cases. Simulation studies and real data analysis on brain connectivity are 
reported in Sections 7 and 8, respectively. Discussion and extension of the proposed method are 
provided in Section 9. All the technical proofs are relegated to the online supplementary material.

2 Hypotheses and applications
Let Xi = (Xi1, . . . , Xip)T be independent and identically distributed (i.i.d.) random vectors from a 
p-dimensional Gaussian distribution with mean μ and covariance Σ, where μ = (μ1, . . . , μ p)T and 
Σ = (σ j1j2 ). Let Ω = Σ−1 = (ω j1j2 ) be the precision matrix. Under the Gaussian distribution, ω j1j2 = 0 
is equivalent to the conditional independence between the j1th and j2th variables. The Gaussian 
graphical model (GGM) G = (N , E) is constructed based on the nonzero elements of Ω, where 
N = {1, . . . , p} is the node set, and E = (e j1j2 ) denotes the edges among the nodes with 
e j1j2 = I(ω j1 j2 ≠ 0). Here, e j1j2 = 1 stands for an edge between the j1th and j2th variables, which rep
resents the two variables being conditionally dependent under the GGM.

Let A1 and A2 be a partition of N such that A1 ∪ A2 =N and A1 ∩ A2 = ∅. We are interested in 
testing for the conditional independence for all the variables in the set A1. Namely, we consider the 
hypotheses

H0 : ω j1j2 = 0 for all j1, j2 ∈ A1 and j1 ≠ j2 vs.
Ha : ω j1j2 ≠ 0 for some j1, j2 ∈ A1 and j1 ≠ j2.

(2.1) 

Let p1 and p2 be the cardinality of the sets A1 and A2, respectively. Note that q = p1(p1 − 1)/2 is the 
number of free off-diagonal parameters of interest in the hypotheses (2.1). In general, the null hypoth
esis of (2.1) is not equivalent to the corresponding covariances σ j1j2 being zero for j1, j2 ∈ A1 and 
j1 ≠ j2. An exemption is the special case that A1 = {1, . . . , p}, where testing the precision matrix 
Ω being diagonal is equivalent to testing Σ being diagonal. However, even under this special case, test
ing for the precision matrix may result in a higher power if the nonzero off-diagonal values in Ω are 
stronger than those in Σ under the alternative hypothesis.

In the following, we provide two examples that require testing for the conditional independence 
structure among variables.

Example 1 (Testing for concliques in Gaussian Markov Random Field). Consider data 
observed with replications on a regular lattice of size d × d. Let sj = (u1j, u2j) 
denote the jth geo-referenced location in a lattice for a horizontal coordinate 
u1j and a vertical coordinate u2j. Let Xisj be the data observed at the location sj 

for the ith replication, and Fij(·) be its conditional cumulative distribution 
function given all the variables observed at other locations. Let N(sj) = 
{sk : sk ≠ sj and Fij(·) depends functionally on Xisk

} be the neighbourhood 
set of sj. In a Gaussian Markov Random Field (GMRF) model (Besag, 
1974), Fij(·) follows the normal distribution with the conditional mean speci
fied by θ j +

􏽐
sk∈N(sj) θ jk(Xisk

− θk). Under this model, Xisj are conditional de
pendent with Xisk 

if and only if sk is in the neighbourhood of s j. For spatial 
data analysis, the key is to specify a correct neighbourhood structure. 
Therefore, it is important to test for conditional independence among varia
bles at different locations (Kaiser & Nordman, 2012).

Cliques and concliques are commonly used in graph theory to describe the 
connections of a network (Skiena, 1991). A clique of a graph G is a complete 
subgraph with pairwise connections between all nodes, while a conclique is a 
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subgraph with no connections between any pair of nodes. In a GMRF model 
with the four-nearest neighbourhood structure, a clique takes the form 
{(u1, u2), (u1 + 1, u2)}, {(u1, u2), (u1 − 1, u2)}, {(u1, u2), (u1, u2 + 1)}, or 
{(u1, u2), (u1, u2 − 1)}, and there is no clique with more than 2 nodes. 
Meanwhile, the locations can be partitioned into two concliques A1 and 
A2 as shown in Table 1, where A1 and A2 include all the locations marked 
by the letter ‘a’ and ‘b’, respectively. Testing conditional independence for 
both A1 and A2 via the hypotheses (2.1) can be used to check the validity 
of the four-nearest neighbourhood structure.

Example 2 (Testing for conditional independence of variables from omics data). With the 
advance of high-throughput measurement technologies, we are able to collect 
different types of data on the same observational unit from different plat
forms. For example, in plant science research, gene expression levels and me
tabolites of plants, soil microbiomes, and plant traits can be collected from 
various systems. Using the omics data, it is of interest to study whether the ex
pression of genes in a certain pathway is conditionally independent with a 
family of microbes in the soil given all other factors, which can be formulated 
as a hypotheses testing problem for the precision matrix in (2.1).

3 Minimax detection boundary
In this section, we derive the detection boundary for the hypotheses (2.1) in terms of the minimax 
power against sparse and weak signals. Here, the nonzero off-diagonal precision coefficients ω j1j2 

for j1, j2 ∈ A1 are considered as signals under Ha of (2.1). The detection boundary is a function of 
signal strength and sparsity which provides the undetectable region of signals. No test procedure is 
able to distinguish the null and alternative hypotheses if the signal strength is lower than the 
boundary at each sparsity level of the signals.

Let ⌊·⌋ and I(·) denote the floor function and the indicator function, respectively. Let ΩA1 be the 
sub-matrix of Ω with rows and columns in A1. Recall that q = p1(p1 − 1)/2 and p1 is the cardin
ality of the set A1. Let ma =

􏽐
(j1,j2)∈A1,j1<j2 I(ω j1j2 ≠ 0) be the total number of nonzero upper- 

diagonal elements in ΩA1 , and tA1 = max j1∈A1

􏽐
j2∈A1

I(ω j1j2 ≠ 0) be the maximal number of non
zero elements in each row of ΩA1 . For a sparsity parameter β ∈ (1/2, 1), the rarity of signals under 
the alternative hypothesis of (2.1) is characterized by q(1−β) such that ma ≥ ⌊q(1−β)⌋. Note that 
ma = ⌊q(1−β)⌋with β > 1/2 represents the sparse signal regime which implies that less than one non
zero off-diagonal element in each row of ΩA1 on average as ma < p1. We consider the signal 
strength at the order { log (q)/n}1/2 such that

|ω j1j2 | =
�����������������

2r j1j2 log (q)/n
􏽱

for r j1j2 > 0, (3.1) 

if ω j1j2 ≠ 0, (j1, j2) ∈ A1 and j1 ≠ j2. Similar settings of signal sparsity and strength are considered 
for testing means (Donoho & Jin, 2004; Hall & Jin, 2010), regression coefficients (Qiu et al., 
2018) and covariance matrices (Chen et al., 2023).

Let λmin(Σ) be the minimum eigenvalue of Σ, and s = max1≤j1≤p
􏽐 p

j2=1 I(ω j1j2 ≠ 0) be the max
imal number of nonzero elements in each row of Ω. For a positive constant C, we derive the mini
max power for testing the hypotheses (2.1) under the following class of precision matrices:

Table 1. Two conclique sets in a 4-nearest neighbourhood model, indexed by the letters ‘a’ and ‘b’

a b a b a b a b a b a b

b a b a b a b a b a b a

a b a b a b a b a b a b

b a b a b a b a b a b a
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U(β, r0, τ) = {Ω : ma ≥ ⌊q(1−β)⌋ nonzero ω j1j2 specified by (3.1) in the upper-

triangle of ΩA1 with r j1j2 ≥ r0, max
j∈A1

ω jj ≤ τ, max
1≤j≤p

σ jj ≤ C,

λmin(Σ) ≥ C−1, s ≤ Cnν for ν ∈ [0, 1/2) and tA1 ≤ C}.

(3.2) 

Under this class, the parameters β and r0 specify the minimum signal number and strength for the 
hypotheses (2.1), respectively, which constitute the sparse and weak signal regime. Clearly, the 
most difficult cases for separating the null and alternative hypotheses of (2.1) under the class 
U(β, r0, τ) is that ma = ⌊q(1−β)⌋ and r j1j2 = r0 for all nonzero off-diagonal values in ΩA1 . The class 
U(β, r0, τ) does not have restriction on the sub-blocks A2 ×A2 and A1 ×A2 of Ω other than the 
sparsity condition s ≤ Cnν. Testing for sparse and weak signals is the most challenging case in sig
nal detection, which has not been studied for precision matrices.

The conditions λmin(Σ) ≥ C−1, s ≤ Cnν for ν ∈ [0, 1/2) and tA1 ≤ C in the last row of (3.2) and 
the condition of bounded variances are required for the asymptotics of the proposed test. Note that 
we do not require the maximum eigenvalue of Σ to be bounded from above. See Conditions 2 and 3
in Section 5. Those conditions are included in the class U(β, r0, τ) so that the minimax detection 
lower boundary in Theorem 1 is consistent with the detection upper boundary of the proposed 
test derived in Theorem 4 under a common class of precision matrices. Particularly, under the con
straint tA1 ≤ C, we consider the precision matrices with non-clustered signals under the alternative 
hypotheses of (2.1) such that no row/column of ΩA1 has a diverging number of nonzero ω j1j2 . For 
instance, in Example 1 of testing the four-nearest neighbourhood structure of a GMRF model 
(Kaiser et al., 2012; Kaiser & Nordman, 2012), we are interested in the power of the test under 
the alternative hypothesis that a few locations have local spatial dependence beyond the four- 
nearest neighbours. Since β > 1/2, q(1−β) = o(p1). This means that the majority of variables in 
A1 have zero precision coefficients in ΩA1 and the average number of signals in each row of 
ΩA1 is less than 1. For the class of precision matrices with unbounded tA1 , the signal regime for 
minimax results could be different as the signals are clustered within a few rows of ΩA1 . More dis
cussions on this point are provided at the end of Section 6.

Let Wα be the collection of all α level tests for the hypotheses (2.1) under the Gaussian distribu
tion. For any W ∈Wα, we reject the null hypothesis (2.1) if W = 1. Let

DB(β) = β − 1/2 if 1/2 < β ≤ 3/4,
(1 −

������
1 − β

􏽰
)2 if 3/4 < β < 1,

􏼚

(3.3) 

which is the optimal detection boundary for testing means under independent normal distribu
tions with unit variance (Donoho & Jin, 2004; Ingster, 1997). For two real sequences {an} and 
{bn}, let an ≍ bn denote the two sequences being at the same order. Namely, there are two positive 
constants c1, c2 such that c1 ≤ an/bn ≤ c2 for all n. The following theorem shows that DB(β) is also 
the minimax detection lower boundary for testing the hypotheses (2.1) over the precision matrix 
class U(β, r0, τ) in (3.2) with β ∈ ( max {1/2, (3 − ξγ−1)/4}, 1) under the Gaussian distribution, 
where ξ > 0 specifies the growth rate of p such that n ≍ pξ and γ ∈ (0, 1] specifies the number 
p1 of variables in the testing set A1 such that p1 ≍ pγ.

Theorem 1 Under n ≍ pξ for ξ > 0, p1 ≍ pγ for γ ∈ (0, 1] and Gaussian distributed data, if 
r0τ−2 < DB(β) and max {1/2, (3 − ξγ−1)/4} < β < 1, we have

sup
W∈Wα

inf
Ω∈U(β,r0,τ)

P(W = 1) ≤ 1 − ω (3.4) 

for any ω ∈ (0, 1 − α) as n, p→∞.

This theorem shows that the power of any test will not converge to 1 uniformly over the class 
U(β, r0, τ) if the standardized signal strength r0τ−2 falls below the detection lower boundary DB(β) 
for β ∈ ( max {1/2, (3 − ξγ−1)/4}, 1). This provides the region of signals where the null hypothesis 
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of (2.1) and the alternative hypotheses from the precision matrix class U(β, r0, τ) are theoretically 
non-separable. Note that the conclusion of Theorem 1 is valid under a broader class of U(β, r0, τ) 
without the constraints λmin(Σ) ≥ C−1, s ≤ Cnν for ν ∈ [0, 1/2) and tA1 ≤ C. But the detection 
upper boundary could probably be inconsistent with the detection lower boundary under such 
a broader class.

Compared to the detection boundary for testing means, our result requires β > (3 − ξγ−1)/4 due 
to the dependence among the pairwise product Xij1 Xij2 of variables in the second moment of the 
likelihood ratio function in (S.4) in the online supplementary material. To derive the minimax low
er boundary, we consider the edges (nonzero ω j1j2 ) in the sub-matrix ΩA1 formed by a random per
fect matching on ma randomly selected variables from A1 under the alternative hypothesis. To 
control the second moment of the likelihood ratio, we need to control the summation of the 
term Eexp{ − δa

􏽐n
i=1 (Zij1Zij2 + Zij2 Zij3 + . . . + ZijℓZijℓ+1 )}(1 − δ2

a)
ℓn
2 = exp(ℓLq/n) over all pairs of 

perfect matching graphs with randomly selected nodes, where Zij1 , . . . , Zijℓ+1 ∼i.i.d.N(0, 1), 
δa =

������������������
2r0τ−2 log (q)/n

􏽰
and ℓ < 2ma is the number of overlapped nodes with different edges in 

two graphs. This requires m2
a/(np1) ≍ p3−ξγ−1−4β

1 → 0. See the derivation from (S.19) to (S.24) in 
the online supplementary material. Note that those pairwise products Xij1 Xij2 are formed from 
the nonzero values in ΩA1 , which are not present in the likelihood ratio for testing means of inde
pendent Gaussian variables.

Also notice that (3 − ξγ−1)/4 ≤ 1/2 when ξ ≥ γ, meaning the derived minimax lower boundary 
covers the whole sparse signal regime β ∈ (1/2, 1) if p1 grows slower than or at the same rate of n. 
This also shows the impact of dimensionality on testing precision matrices. When ξ < γ, the mini
max result for the range β ∈ (1/2, (3 − ξγ−1)/4) is unknown, which corresponds to denser signals 
compared with the range β ∈ ((3 − ξγ−1)/4, 1). Note that (3 − ξγ−1)/4 < (3 − ξ)/4, and this range 
(1/2, (3 − ξγ−1)/4) with unknown minimax boundary becomes wider as the growth rate of p1 

increases.
In the next section, we propose a thresholding test that is generally applicable for the hypotheses 

in (2.1) and is powerful against rare and faint signals in ΩA1 . Particularly, in Section 6, we show 
that the proposed test is able to attain the minimax detection lower boundary derived in Theorem 
1 so that the power of the test would converge to 1 uniformly over all Ω ∈ U(β, r0, τ) if r0τ−2 > 
DB(β) and (ξ/γ)(1/2 − ν) ≥ 1. Hence, the derived lower boundary DB(β) is tight for testing the hy
potheses in (2.1) under this case.

4 Multi-level thresholding test
To construct a test that is able to achieve the minimax detection boundary, we first estimate the 
precision matrix Ω via the nodewise regression approach (Chang et al., 2018; Liu, 2013). 
Consider the regression of Xij1 on all the other variables:

Xij1 − μ j1 =
􏽘

j2≠j1

β j1j2 (Xij2 − μ j2 ) + ϵij1 (4.1) 

for j1 = 1, . . . , p. From Lemma 1 in Peng et al. (2009), the regression error ϵij1 is uncorrelated with 
the covariates Xij2 for j2 ≠ j1 if and only if β j1j2 = −ω j1 j2/ω j1j1 for all j2 ≠ j1, and under such regres
sion coefficients, we have Cov(ϵij1 , ϵij2 ) = ω j1j2/(ω j1j1 ω j2j2 ). Therefore, an estimator of ω j1j2 can be 
constructed by the residuals from the nodewise regressions in (4.1).

Let ϵi = (ϵi1, . . . , ϵip)T, and V = Cov(ϵi) = (v j1j2 ). Let Ψ = (ρ j1j2 ) be the correlation matrix of 
ϵi, where ρ j1j2 = v j1j2 (v j1j1v j2j2 )−1/2 is the correlation between ϵij1 and ϵij2 . Let 
X̅ = (X̅1, . . . , X̅p)T =

􏽐n
i=1 Xi/n and 􏽢Σ = (􏽢σ j1 j2 ) be the sample mean and sample covariance ma

trix, respectively. We fit the high-dimensional nodewise regression in (4.1) by lasso 
(Tibshirani, 1996). Other regularized estimation methods can be applied as well, such as 
Dantzig selector (Candes & Tao, 2007) or scaled lasso (Sun & Zhang, 2012). Let β j = 
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(β j1, . . . , β jp)T with β jj = −1, and

􏽢β j = argmin
βj∈Rp,β jj=−1

1
2n

􏽘n

i=1

{βT
j (Xi − X̅)}2 + λj

􏽘

k≠j

􏽢σ1/2
kk |β jk|

⎡

⎣

⎤

⎦ (4.2) 

be its lasso estimator, where λ j is the penalty parameter. For each i = 1, . . . , n, let 􏽢ϵi = 
(􏽢ϵi1, . . . ,􏽢ϵip)T be the residuals of fitting (4.1), where 􏽢ϵij = −􏽢βT

j(Xi − X̅). Following Liu (2013)
and Chang et al. (2018), the bias corrected estimator for ω j1j2 is

􏽢ω j1j2 =
􏽢v j1j2

􏽢v j1j1􏽢v j2 j2
where􏽢v j1j2 = −

1
n

􏽘n

i=1

(􏽢ϵij1􏽢ϵij2 +􏽢β j1j2􏽢ϵ
2
ij2 +􏽢β j2 j1􏽢ϵ

2
ij1 ). (4.3) 

Note that 􏽢v jj = 1
n

􏽐n
i=1􏽢ϵ2

ij since 􏽢β jj is set as −1 for all j = 1, . . . , p.
Based on the asymptotic expansion of 􏽢ω j1j2 provided in Lemma 1, the main order term of 

Var{
��
n
√

(􏽢ω j1j2 − ω j1j2 )} is θ j1j2 = Var(ϵij1 ϵij2 )/(v2
j1j1 v2

j2 j2 ) = (1 + ρ2
j1j2 )(v j1j1 v j2j2 )−1, which can be esti

mated as 􏽢θ j1j2 = (􏽢v j1j1􏽢v j2j2 )−1 under the null hypothesis ω j1j2 = 0. Let 􏽢ρ j1j2 =􏽢v j1j2 (􏽢v j1j1􏽢v j2j2 )−1/2. 
Note that −􏽢ρ j1j2 

is the estimated partial correlation between the j1th and j2th variables while con
trolling all other variables (Qiu & Zhou, 2020). The standardized statistic for testing ω j1 j2 = 0 can 
be constructed as

Vj1j2 = n􏽢ω2
j1 j2
􏽢θ−1

j1j2 = n􏽢ρ2
j1j2 . (4.4) 

To construct a test for the global hypotheses in (2.1) that is powerful against sparse and weak sig
nals, the key is to screen out the non-signal components in ΩA1 . Therefore, we consider to aggre
gate the informative Vj1j2 with nonzero values of ω j1j2 together. Let

T(t) =
􏽘

j1,j2∈A1,j1<j2

Vj1j2I{Vj1j2 ≥ λq(t)} (4.5) 

be a thresholding statistic with a threshold level t ∈ (0, 1), where λq(t) = 2t log q. Xia et al. (2018)
proposed an L2 type statistic for testing (2.1) with a finite A1, which sums all Vj1j2 over j1, j2 ∈ A1. 
Comparing to the L2 statistic, T(t) can be viewed as a regularized summation of Vj1j2 by thresh
olding, which removes small values of Vj1j2 that are unlikely to carry signals. The thresholding 
component is able to reduce the variance of T(t), and hence, to increase its signal-to-noise ratio 
to detect sparse signals. A similar formulation of the thresholding statistic has been used for testing 
means (Zhong et al., 2013) and regression coefficients (Qiu et al., 2018). Furthermore, we allow 
the cardinality of the test set A1 to diverge, while the L2 test requires a finite size of A1. This is due 
to the L2 statistic suffers from error accumulation as 􏽢ω2

j1j2 
is not an unbiased estimator of ω2

j1j2 . 
However, this problem can be avoided by our thresholding procedure. Comparing to the Lmax 

type test (Xia et al., 2015), the thresholding test uses all Vj1j2 over a threshold. This increases sig
nals in the proposed statistic and results in higher power in detecting weak signals. Therefore, the 
thresholding statistic is more powerful than the L2 and Lmax type tests to detect signals that are 
both sparse and weak.

As 
��
n
√
􏽢ρ j1j2 

is asymptotic normal distributed if ρ j1j2 = 0, by the large deviation result established 
in Lemma S1 in the online supplementary material, the tail distribution of Vj1j2 can be approxi
mated by that of the Chi-square distribution X2

1 with 1 degree of freedom. It follows that

P max
j1,j2∈A1,j1<j2

Vj1j2 ≥ 2 log q |H0

􏼒 􏼓

= o(1). (4.6) 

Therefore, the constraint of the threshold level less than 1 prevents zero value for the thresholding 
statistic T(t) under the null hypothesis.
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Let ϕ(·) and Φ(·) be the density and cumulative distribution functions of the standard normal 
distribution, respectively, and let Φ̅(x) = 1 − Φ(x). As the tail probability of Vj1j2 can be approxi
mated by that of the Chi-square distribution X2

1 from Lemma S1 in the online supplementary 
material, the mean and variance of Vj1j2 can be estimated by those of X2

1I{X2
1 > λq(t)}. Let

μ̃0(t) = q[2λ1/2
q (t)ϕ{λ1/2

q (t)} + 2Φ̅{λ1/2
q (t)}] and

σ̃2
0(t) = q[2{λ3/2

q (t) + 3λ1/2
q (t)}ϕ{λ1/2

q (t)} + 6Φ̅{λ1/2
q (t)}].

(4.7) 

It can be shown that μ̃0(t) and σ̃2
0(t) are the main order terms of E{T(t)} and Var{T(t)} under the null 

hypothesis in (2.1), respectively. Note that μ̃0(t)/q and σ̃2
0(t)/q are the mean and variance of 

X2
1I{X2

1 > λq(t)}, respectively. Theorem 2 in Section 5 establishes the asymptotic normality of {T(t) − 
μ̃0(t)}σ̃−1

0 (t) under the null hypothesis, which implies a single-level thresholding test with the p-value 
pv(t) = P[N(0, 1) > {T(t) − μ̃0(t)}σ̃−1

0 (t)]. The null hypothesis of (2.1) is rejected if pv(t) < α.
Clearly, both the statistic T(t) and its associated p-value pv(t) depend on the threshold level t. To 

choose the threshold that maximizes the power for testing (2.1), we consider minimizing the 
p-values {pv(t)} of the single-level thresholding test over t. As the p-value is determined by the 
standardized thresholding statistic {T(t) − μ̃0(t)}σ̃−1

0 (t), minimizing the p-values is equivalent to 
maximizing the standardized values of T(t) over the threshold level t. This motivates us to con
struct a multi-level thresholding statistic

M(t0) = sup
t0<t≤1−η

T(t) − μ̃0(t)
σ̃0(t)

, (4.8) 

where t0 is the threshold lower bound and η is an arbitrarily small positive constant, which pre
vents the threshold reaches to 1 for the reason explained in (4.6). By maximizing over t, the statistic 
M(t0) is a more critical measure for the null hypothesis than the single thresholding statistic T(t). 
This is in the same spirit as the HC tests for means (Donoho & Jin, 2004; Hall & Jin, 2010). Here, 
the lower bound t0 avoids small threshold values and regulates the dependence among {Vj1j2 } in 
T(t). More discussions on the threshold lower bound and its impact on the power of the test 
are provided after Theorems 2 and 4.

Let S(t0) = {t j1j2 : t j1j2 = Vj1 j2/(2 log q) and t0 < t j1j2 < (1 − η)} be the set of threshold levels at 
which the value of T(t) changes. Since both μ̃0(t) and σ̃0(t) are monotone functions of t, it follows 
that M(t0) can be equivalently expressed as

M(t0) = sup
t∈S(t0)

T(t) − μ̃0(t)
σ̃0(t)

, (4.9) 

which avoids calculation of the standardized statistic {T(t) − μ̃0(t)}σ̃−1
0 (t) for all values of t in the 

interval (t0, 1 − η]. It is shown in Theorem 2 that M(t0) converges to a Gumbel distribution as 
n, p1 →∞. Based on this result, we construct the multi-level thresholding test (MTT) that rejects 
H0 in (2.1) at the significance level α if

M(t0) > [qα + b{ log (q), t0, η}]/a{ log (q)}, (4.10) 

where qα = − log log {(1 − α)−1} is the upper α quantile of the Gumbel distribution, a(y) = 
{2 log (y)}1/2 and b(y, t0, η) = 2 log (y) + 2−1 log log (y) − 2−1 log (π) + log {(1 − t0 − η)/2}.

From the proof of Theorem 4, if the minimum standardized signal strength r0τ−2 is above the 
detection boundary, defined in (6.2), of the proposed multi-level thresholding test at the sparsity 
level β, there exists a threshold level t∗(β, r0τ−2) such that the power of the single-level thresholding 
test with the threshold level t∗(β, r0τ−2) converges to 1 uniformly over Ω ∈ U(β, r0, τ). However, 
this threshold level t∗(β, r0τ−2) is unknown in practice and changing with respect to β and r0τ−2. 
The logic of multi-level thresholding is to conduct the single-level thresholding test for a sequence 
of threshold levels and to choose the most significant one. This makes the multi-level thresholding 
test more powerful and adaptive to signals with different sparsity levels and strengths. In this way, 
the multi-level thresholding procedure makes the proposed test in (4.10) optimal in terms of 
achieving the minimax detection boundary DB(β) under the precision matrix class U(β, r0, τ).
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5 Asymptotics under null hypothesis
To derive the theoretical properties of the proposed thresholding statistics, we make the following 
regularity conditions. Recall that λmin(Σ) is the minimum eigenvalue of Σ, and 
s = max1≤j1≤p

􏽐 p
j2=1 I(ω j1 j2 ≠ 0). Without loss of generality, we assume E(Xi) = 0. Let C be a posi

tive constant which may change from case to case.

Condition 1 The dimension p→∞ as n→∞ such that n ≍ pξ for ξ > 0.

Condition 2 For a positive constant C, max1≤j≤p σ jj ≤ C and λmin(Σ) ≥ C−1.

Condition 3 Suppose that s ≤ Cnν for ν ∈ [0, 1/2).

Condition 1 prescribes the relationship between n and p, where p can grow at a polynomial rate 
of n. Our theoretical results could allow an exponential growth rate of p, but this requires a more 
restrictive condition on the sparsity of Ω such that s ≤ Cnν/ log p. Condition 2 assumes the min
imum eigenvalue of Σ is bounded away from zero, which is used to guarantee the compatibility 
condition for all p nodewise regressions (Bühlmann & van de Geer, 2011). Since ω jjσ jj ≥ 1 for 
all j, this condition implies C−1 ≤ min {ω jj, σ jj : j = 1, . . . , p} ≤ max {ω jj, σ jj : j = 1, . . . , p} ≤ C. 
Since θ j1j2 = (1 + ρ2

j1j2 )ω j1j1 ω j2j2 , Condition 2 also leads to bounded {θ j1j2 } away from zero and 
∞, which avoids the singularity issue in the standardization of 􏽢ω j1j2 . The maximum eigenvalue 
λmax(Σ) of Σ is not necessarily bounded from above under Condition 2. Note that the condition 
of λmax(Σ) ≤ C is not needed for the de-sparsified lasso estimator in van de Geer et al. (2014)
and the nodewise regression approach for estimating precision matrices in Liu (2013).

Condition 3 imposes sparse structure on the precision matrix Ω such that the nonzero values in 
each row of Ω do not exceed the order nν for ν ∈ [0, 1/2). Under the null hypothesis of (2.1), ΩA1 is 
a diagonal matrix, but we allow the elements of Ω in the sub-blocks A1 ×A2 and A2 ×A2 to be 
nonzero. Note that for high-dimensional regression, a weaker condition that the number of non
zero regression coefficients being at a smaller order of n/ log (p) is sufficient for the convergence of 
the lasso type estimators in the prediction and ℓ2 norms under the compatibility or restricted eigen
value conditions on the design matrix (Bühlmann & van de Geer, 2011). However, the statistical 
inference of de-biased estimators of regularized estimation typically requires a stronger sparsity 
condition. Particularly, for estimating a sparse precision matrix, Ren et al. (2015) showed that 
s log (p)/n + n−1/2 is the rate of the minimax lower bound for the error of estimating ω j1j2 , and 
the condition s = o{n1/2( log p)−1} is needed to derive the asymptotic distribution of 
��
n
√

(􏽢ω j1j2 − ω j1j2 ). The same sparsity condition is also required for the de-sparsified lasso estimator 
for the inference of regression coefficients (van de Geer et al., 2014; Zhang & Zhang, 2014). 
Comparing to the sparsity conditions s = o{n1/2( log p)−1} (Ren et al., 2015) and 
s = o{n1/2( log p)−3/2} (Chang et al., 2018; Liu, 2013; Xia et al., 2015) on precision matrices in lit
erature, our Condition 3 is slightly stronger. This is because we need to uniformly control the small 
order terms in the expansion of 􏽢ω j1 j2 over all j1, j2 ∈ A1 and derive its Cramér type large deviation 
result with an explicit error bound.

The following lemma gives the asymptotic expansion of the estimated precision coefficient 􏽢ω j1j2 , 
which prepares for the large deviation results of Vj1j2 and the theoretical properties of T(t). Recall 
that an ≍ bn means two sequences {an} and {bn} being at the same order, and ϵi = (ϵi1, . . . , ϵip)T is 
the nodewise regression errors in (4.1).

Lemma 1 Under Conditions 1–3, λj = ψω−1/2
jj { log (p)/n}1/2 for any constant ψ > 2 and 

j = 1, . . . , p, it holds that

􏽢ω j1j2 − ω j1j2 = −(􏽥v j1j2 − v j1j2 )/(v j1j1 v j2 j2 ) + Op{s log (p)/n}, (5.1) 

where 􏽥v j1j2 = n−1􏽐n
i=1 ϵij1 ϵij2 and Op{s log (p)/n} is a higher order term uni

formly for all j1 and j2. Furthermore, max j1,j2∈A1 |
􏽢θ j1j2/θ j1j2 − 1| = 

Op{n−1/2( log p)1/2} under H0 of (2.1).
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Lemma 1 requires the penalty parameters {λj} not too small. Since ω−1
jj ≤ σ jj, an initial estimate 

􏽢ω jj,(1) of ω jj can be obtained by choosing the penalty parameter in (4.2) as 2{􏽢σ jj log (p)/n}1/2. Then, 
the updated penalty parameter λ j = ψ􏽢ω−1/2

jj,(1){ log (p)/n}1/2 is used to re-estimate the nodewise re
gression in (4.2), where ψ is set as 2.1, a constant slightly larger than 2. Cross-validation selection 
of ψ that restricts ψ > 2 can be implemented as well. Both fixed and cross-validated ψ are imple
mented in the simulation study.

Since s log p = o(
��
n
√

) under Condition 3, Lemma 1 implies the asymptotic normality of the es
timator 􏽢ω j1j2 for each entry of Ω. Similar result on the expansion of 􏽢ω j1j2 is given in Chang et al. 
(2018). Here, we additionally provide the exact rate s log (p)/n of the small order term in 􏽢ω j1j2 , 
which is needed to derive the Cramér type large deviation result for 􏽢ω j1j2 , and to control the small 
order terms in the thresholding statistic T(t).

Specifically, let V∗j1 j2 = n􏽥v2
j1j2/(θ j1j2 v2

j1j1 v2
j2 j2 ) = n􏽥v2

j1j2/Var(ϵij1 ϵij2 ). From Lemma 1, since 􏽢ω j1j2 = 
−􏽥v j1j2/(v j1j1 v j2j2 ) + Op{s log (p)/n} under H0 of (2.1), we have

Vj1j2 = n􏽢ω2
j1j2
􏽢θ−1

j1j2 = V∗j1 j2 + Op{s log3/2 (p)/
��
n
√

} 

for ω j1j2 = 0. Although the error terms Op{s log3/2 (p)/
��
n
√

} accumulates in the proposed statistic 
T(t) by the summation over j1, j2 ∈ A1, due to its thresholding component I{Vj1j2 ≥ λq(t)} to remove 
noisy non-signal components in T(t), those small order terms are negligible in T(t) by choosing a 
proper range for the threshold level t. This range of t is given in the following theorem, which estab
lishes the asymptotic normality of {T(t) − μ̃0(t)}/σ̃0(t), where μ̃0(t) and σ̃2

0(t) are defined in (4.7).

Theorem 2 Under Conditions 1–3, H0 of (2.1), λj = ψω−1/2
jj { log (p)/n}1/2 for any constant 

ψ > 2 and j = 1, . . . , p, p1 ≍ pγ for γ ∈ (0, 1], and the threshold level t that sat
isfies q1/2−t/2nν−1/2 = o(1), we have

σ̃−1
0 (t){T(t) − μ̃0(t)}d→ N(0, 1) as n, p, q→∞.

Theorem 2 shows that the single-level thresholding test which rejects the null hypothesis in (2.1) 
if T(t) > μ̃0(t) + zασ̃0(t) is able to control the size at α asymptotically, where zα denotes the upper α 
quantile of the standard normal distribution. The condition q1/2−t/2nν−1/2 = o(1) imposes a lower 
bound on the threshold level t. This threshold lower bound is needed to derive the asymptotic prop
erties of T(t) for three reasons. First, to prove Theorem 2, we approximate the statistic Vj1j2 by 
V∗j1j2 = n􏽥v2

j1j2/Var(ϵij1 ϵij2 ) using the true errors of the nodewise regressions. A larger threshold level 
is needed to control the accumulated estimation error of 􏽢ω j1 j2 in T(t) due to the lasso estimation. 
Second, the result of Theorem 2 requires the bias for estimating the mean of T(t) being sufficiently 
small such that |E{T(t)|H0} − μ̃0(t)| = o{σ̃0(t)}, where |E{T(t)|H0} − μ̃0(t)|/σ̃0(t) ≍ s( log p)3/2 

q(1−t)/2n−1/2. The bias of μ̃0(t) is due to the error term O{s( log p)3/2n−1/2} in the Cramér-type tail 
probability of Vj1j2 . Note that this error term still exists in the large deviation result of 􏽥v j1j2 based 
on the true regression errors, but it is at a smaller order O{( log p)3/2n−1/2}. The extra factor s is due 
to the ℓ1 estimation error of the nodewise regression coefficients. Please see Lemmas S1 and S2 in the 
online supplementary material. Due to a similar reason, threshold lower bounds are required for 
thresholding statistics built on sample means under non-Gaussian data (Zhong et al., 2013), 
component-wise t-statistics (Delaigle et al., 2011) and maximum likelihood estimators (Qiu 
et al., 2018). Third, as the covariances among {Vj1j2I{Vj1j2 ≥ λq(t)}} decrease with the increase of 
the threshold level t, a larger value of t is also needed to mitigate the dependence in the thresholding 
statistic T(t).

Note that, when p1 ≍ pγ for γ ∈ (0, 1], and equivalently q ≍ p2γ, the condition q1/2−t/2nν−1/2 = 
o(1) implies t > max {1 − (ξ/γ)(1/2 − ν), 0}. When γ ≥ 1/2 meaning the number of the testing pa
rameters in ΩA1 is at least at the order p, since (1/2 − ν)/γ < 1, our required lower bound of t is 
more restrictive than the requirement t > max {1 − ξ, 0} in testing means (Zhong et al., 2013) 
and fixed-dimensional regression coefficients (Qiu et al., 2018). This is because estimating a high- 
dimensional precision matrix is much more difficult than estimating means and parameters in a 
fixed-dimensional model. From the nodewise regression in (4.1) and Lemma 1, estimation of 
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ω j1j2 requires estimating a high-dimensional set of nuisance parameters {β j1j2 }, which leads to a lar
ger estimation error at the order Op{s log (p)/n} for the estimator 􏽢ω j1j2 .

Based on the result in Theorem 2, we choose t0 = max {1 − (ξ/γ)(1/2 − ν), 0} for the multi-level 
thresholding statistic M(t0) under the specification p1 ≍ pγ for the size of A1. Recall that a(y) = 
{2 log (y)}1/2 and b(y, t0, η) = 2 log (y) + 2−1 log log (y) − 2−1 log (π) + log {(1 − t0 − η)/2}. The fol
lowing theorem shows the asymptotic distribution of M(t0).

Theorem 3 Under Conditions 1–3, H0 of (2.1), λj = ψω−1/2
jj { log (p)/n}1/2 for any constant 

ψ > 2 and j = 1, . . . , p, p1 ≍ pγ for γ ∈ (0, 1], and t0 = max {1 − (ξ/γ) 
(1/2 − ν), 0}, we have P[a{ log (q)}M(t0) − b{ log (q), t0, η} ≤ x]→ exp( − e−x).

Theorem 3 shows the multi-level thresholding statistic converges to an extreme value distribu
tion. It verifies that the proposed multi-level thresholding test in (4.10) is able to control its size at α 
for testing the hypotheses in (2.1) when n, p, and q are large.

6 Power analysis
In this section, we study the power of the proposed multi-level thresholding test. We derive its de
tection boundary under the class U(β, r0, τ) in (3.2), which means the power of the proposed test 
would converge to 1 universally over U(β, r0, τ) for any signal above this boundary and show this 
boundary matches with the minimax detection lower boundary derived in Theorem 1 under cer
tain conditions.

From Lemma 1, 
��
n
√

(􏽢ω j1j2 − ω j1j2 )􏽢θ−1/2
j1j2 

is asymptotic standard normal distributed if 
s log p = o(

��
n
√

). Therefore, 
��
n
√
|ω j1j2 |θ

−1/2
j1j2 

is the standardized signal strength for testing ω j1j2 . 

For |ω j1j2 | = {2r j1j2 log (q)/n}1/2, its standardized signal strength is equal to 
{2(r j1j2/θ j1j2 ) log (q)}1/2, which is characterized by r j1j2/θ j1j2 . Here, r j1j2 represents the strength of 
the nonzero ω j1j2 , and θ j1j2 measures the variation of the estimator 􏽢ω j1j2 .

For a precision matrix Ω ∈ U(β, r0, τ), the power of the proposed test is

Powern(Ω) = P(M(t0) > [qα + b{ log (q), t0, η}]/a{ log (q)} |Ω).

We consider the minimal power over the class U(β, r0, τ). Note that {2r0τ−2 log q}1/2 is the minimal 
standardized signal strength for all precision matrices from U(β, r0, τ), where 
r0τ−2 = min {r j1j2/θ j1j2 : Ω ∈ U(β, r0, τ)}. Let Ω0 denote a precision matrix from U(β, r0, τ) with 
q1−β nonzero elements in the upper-triangle of Ω0,A1 , all nonzero values being 
|ω j1j2 | = {2r0 log (q)/n}1/2, and ω jj = τ for all j ∈ A1. Then, the standardized signal strength for 
all nonzero elements in Ω0,A1 are universally equal to the minimal value {2r0τ−2 log q}1/2. 
Intuitively, Ω0 is the most difficult case in the class U(β, r0, τ) to separate the null and alternative 
hypotheses of (2.1). In the proof of Theorem 4 in the online supplementary material, we have 
shown that Powern(Ω0) = minΩ∈U(β,r0,τ) {Powern(Ω)}. Therefore, it suffices to consider the power 
for testing Ω0 to derive the detection boundary of the proposed test.

Let Lp = c1 logc2 (p) denote a multi-log p term for some constants c1 > 0 and c2 which may 
change from case to case. It is shown in Section S3 of the online supplementary material that 
the main orders for the mean and variance of the thresholding statistic T(t) under the precision 
matrix Ω0 are μ̃0(t) + μ̃s(t) and σ̃2

a(t) = σ̃2
0(t) + σ̃2

s (t), respectively, where μ̃0(t) and σ̃2
0(t), given in 

(4.7), are the mean and variance of T(t) under the null hypothesis, and the expressions of both 
μ̃s(t) and σ̃2

s (t) are in the form

Lpq(1−β)I(t < r0τ−2) + Lpq(1−β)−(
�
t
√

−
�����
r0τ−2
√

)2
I(t > r0τ−2). (6.1) 

Here, the multi-log p term Lp is different for μ̃s(t) and σ̃2
s (t). Note that

M(t0) = sup
t0<t≤1−η

T(t) − μ̃0(t)
σ̃0(t)

= sup
t0<t≤1−η

σ̃a(t)
σ̃0(t)

T(t) − μ̃0(t) − μ̃s(t)
σ̃a(t)

+ SNR(t)
􏼚 􏼛

, 
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where SNR(t) = μ̃s(t)σ̃−1
a (t) is the signal-to-noise ratio for the single-level thresholding test with 

threshold level t. In the expression of SNR(t), the ‘signal’ is reflected by μ̃s(t), which is the difference 
of E{T(t)} between the null and alternative hypothesis, and σ̃a(t) is the ‘noise’ part, which is the 
standard deviation of T(t) under the alternative hypothesis.

As the rejection value for M(t0) is a multi-log p term and {T(t) − μ̃0(t) − μ̃s(t)}σ̃−1
a (t) = Op(1) 

under the alternative hypothesis, the power of the proposed multi-level thresholding test converges 
to 1 if the maximal signal-to-noise ratio supt0<t≤1−ηSNR(t) diverges to infinity at a polynomial rate 
of p. The expression of supt0<t≤1−ηSNR(t) can be derived based on the expressions of σ̃2

0(t), μ̃s(t), 
and σ̃2

s (t) given in (4.7) and (6.1), which depends on the signal sparsity parameter β, the minimal 
standardized signal strength r0τ−2 under U(β, r0, τ), and the threshold lower bound 
t0 = max {1 − (ξ/γ)(1/2 − ν), 0}.

By deriving the range of β and r0τ−2 which makes supt0<t≤1−ηSNR(t)→∞ at a polynomial rate 
of p, our study establishes the detection boundary DB(β, ξ/γ, ν) for the power of the proposed test, 
defined as

DB(β, ξ/γ, ν) =

{
���������������
8 − 8c(ξ/γ, ν)

􏽰
−

���������������������
8 − 8β − 4c(ξ/γ, ν)

􏽰
}2

8
, 1/2 < β ≤ 3/4 − c(ξ/γ, ν)/4,

β − 1/2, 3/4 − c(ξ/γ, ν)/4 < β ≤ 3/4,
(1 −

������
1 − β

􏽰
)2, 3/4 < β < 1,

⎧
⎪⎪⎨

⎪⎪⎩

(6.2) 

where c(ξ/γ, ν) = min {(ξ/γ)(1/2 − ν), 1}. The following theorem shows that the power of the pro
posed test would converge to 1 uniformly over the class U(β, r0, τ) if r0τ−2 > DB(β, ξ/γ, ν).

Theorem 4 Under Condition 1, the precision matrix class U(β, r0, τ) under the alternative 
hypothesis of (2.1), p1 ≍ pγ for γ ∈ (0, 1], λj = ψω−1/2

jj { log (p)/n}1/2 for any 
constant ψ > 2 and j = 1, . . . , p, and t0 = max {1 − (ξ/γ)(1/2 − ν), 0}, if 
r0τ−2 > DB(β, ξ/γ, ν), we have minΩ∈U(β,r0,τ) Powern(Ω)→ 1 as n, p, q→∞.

Theorem 4 provides a sufficient condition for the power of the proposed test converging to 1 
over the class U(β, r0, τ) under the alternative hypothesis of (2.1). Comparing to the detection 
boundary DB(β) in (3.3) for testing means under independent normal distributions with unit vari
ance (Ingster, 1997), the detection boundary DB(β, ξ/γ, ν) of the proposed test is different from 
DB(β) when 1/2 < β ≤ {3 − c(ξ/γ, ν)}/4. From the expression in (6.2), it can be shown that 
DB(β, ξ/γ, ν) > DB(β) in this interval. Note that max {1/2, (3 − ξγ−1)/4} ≤ {3 − c(ξ/γ, ν)}/4. The 
proposed test cannot attain the minimax detection lower boundary in the range max {1/2, (3 − 
ξγ−1)/4} ≤ β ≤ {3 − c(ξ/γ, ν)}/4 if (ξ/γ)(1/2 − ν) < 1. The elevated detection boundary of the pro
posed test is due to the imposed threshold lower bound t0, which is used to control the aggregation 
of the small order terms in 􏽢ω j1j2 , the bias of μ̃0(t) for estimating E{T(t)|H0} and the dependence 
among {Vj1j2I{Vj1j2 ≥ λq(t)}} in the statistic T(t), as discussed after Theorem 2. Note that such a 
threshold lower bound is not needed for testing means under independent Gaussian distributions 
as sample means are normally distributed. Testing for precision matrices is more challenging, as 
both the estimation of ω j1j2 and the dependence among the estimates 􏽢ω j1j2 are much more involved 
and complicated than sample means.

If (ξ/γ)(1/2 − ν) ≥ 1, we have max {1/2, (3 − ξγ−1)/4} = {3 − c(ξ/γ, ν)}/4 = 1/2, and hence, 
DB(β, ξ/γ, ν) = DB(β) for the whole range of sparse signal β ∈ (1/2, 1). The results in Theorems 
1 and 4 imply that under this case, DB(β) is the optimal detection boundary and the proposed 
test is sharp optimal in the sense that no test is able to separate the null and alternative hypotheses 
of (2.1) uniformly over U(β, r0, τ) if r0τ−2 is lower than DB(β), and the power of the proposed test 
approaches to 1 if r0τ−2 is above this boundary. The condition (ξ/γ)(1/2 − ν) ≥ 1 means that, given 
the sparsity level s = O(nν) of Ω for ν ∈ [0, 1/2), the proposed test is able to achieve the whole 
minimax detection boundary over β ∈ (1/2, 1) if the size of the testing set A1 is sufficiently small 
or the sample size is sufficiently large.

The minimax undetectable region is plotted in Figure 1 together with the detection boundary 
DB(β, ξ/γ, ν) of the proposed multi-level thresholding test. Figure 1 shows the minimax detection 
boundary DB(β) covers the whole sparse regime β ∈ (1/2, 1) when ξ = 1, 0.8 and γ = 0.4, 0.8. For 
the case ξ = 1, γ = 0.4 and ν = 0.1 in the left panel, the proposed test is able to achieve the minimax 
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detection boundary DB(β) for β ∈ (1/2, 1). However, for the other combinations of ξ, γ and ν con
sidered in Figure 1, the proposed test is only able to achieve DB(β) for β larger than 
3/4 − c(ξ/γ, ν)/4, denoted as a(ξ/γ, ν) in Figure 1. It has an elevated detection boundary for 
1/2 < β < 3/4 − c(ξ/γ, ν)/4.

Let 􏽥U(β, r0, τ) be the class U(β, r0, τ) of precision matrices without the constraint tA1 ≤ C. Now, 
we discuss the power of the proposed test under the class 􏽥U(β, r0, τ) that allows a diverging number 
of signals in the rows of Ω. One case is that all the nonzero precision coefficients locate in only one 
row of Ω, say A1 = {1, . . . , p1} and ω12, . . . , ω1ma+1 ≠ 0. Under this case, the covariances among 
{Vj1j2I{Vj1 j2 ≥ λq(t)}} could dominate the variance of T(t) due to the clustered signal structure, 
which would lower the signal-to-noise ratio of the proposed test. The following corollary studies 
the power of the proposed test without the constraint tA1 ≤ C.

Corollary 1 Under Condition 1, the precision matrix class 􏽥U(β, r0, τ), p1 ≍ pγ for 
γ ∈ (0, 1], λj = ψω−1/2

jj { log (p)/n}1/2 for any constant ψ > 2 and 
j = 1, . . . , p, and t0 = max {1 − (ξ/γ)(1/2 − ν), 0}, if r0τ−2 > DB(β, ξ/γ, ν) 
and r0τ−2 > t0, we have min

Ω∈􏽥U(β,r0,τ)
Powern(Ω)→ 1 as n, p, q→∞.

Corollary 1 shows that the power of MTT can still converge to 1 under 􏽥U(β, r0, τ), but it requires 
a stronger condition r0τ−2 > t0 in addition to r0τ−2 > DB(β, ξ/γ, ν) on the signal strength, com
pared to the power analysis under U(β, r0, τ) in Theorem 4. Note that the condition r0τ−2 > t0 trivi
ally holds if ξ/γ ≥ (1/2 − ν)−1. Meanwhile, if the signals are clustered in at least one row of Ω under 
Ha of (2.1), the test statistic R(t) = max j1∈A1

􏽐
j2∈A1

Vj1j2I{Vj1j2 ≥ λq(t)} that takes the maximal ac
cumulative signals per row could be more powerful than T(t).

7 Numerical study
In this section, we evaluate the performance of the proposed multi-level thresholding test, and 
compare it with the Lmax type test in Xia et al. (2015) (denoted as Lmax-test) and the L2 type 
test in Xia et al. (2018) (denoted as L2-test). We consider both the overall test for Ω being diagonal 
and the test for precision coefficients of a subset of variables. Note that the L2-test was constructed 
for testing a finite number of precision coefficients, which is not applicable for testing diverging 
sizes of sub-blocks or the whole precision matrix. Meanwhile, the Lmax-test was originally de
signed for testing two precision matrices being the same by utilizing the maximum difference be
tween the two-sample estimates. We modify it for the one-sample hypotheses in (2.1) by the 
maximum of |􏽢ω j1j2 | over A1.

Figure 1. The minimax detection boundary DB(β) and the detection boundary DB(β, ξ/γ, ν) of the proposed 
multi-level thresholding test for ξ = 1 (left panel) and 0.8 (right panel), where a(ξ/γ, ν) = 3/4 − c(ξ/γ, ν)/4 on the x-axis 
indicating the point where DB(β, ξ/γ, ν) deviates from DB(β).
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We set n = 100, 125, 150 and p = 250, 350, 450, and determined the threshold lower bound as 
t0 = max {1 − (ξ/γ)(1/2 − ν), 0} from Theorem 3, where ξ and ν were treated as 1 and 0 in the simu
lation, respectively, and γ = 1 for testing the whole precision matrix Ω. This led to t0 = 0.5 in the 
simulation. We still kept t0 = 0.5 for testing sub-blocks of Ω, although it can be set smaller as γ < 1 
for those cases. Note that ν = 0 stands for at most finite number of nonzero components in each 
row of Ω. The technical constant η was set as 0.05. As discussed after Lemma 1, the lasso penalty 
parameter λj in (4.2) for the nodewise regression was chosen as λj = ψ􏽢ω−1/2

jj,(1){ log (p)/n}1/2, where 

􏽢ω jj,(1) is the initial estimate of ω jj using the penalty value 2{􏽢σ jj log (p)/n}1/2 for the nodewise regres
sion. We used both fixed penalty ψ = 2.1 (denoted as MTT2.1) and cross-validation (CV) selected ψ 
from the set {2 + k/10 : k = 1, . . . , 30} (denoted as MTTcv), where the lower bound 2 was imposed 
on ψ to satisfy the condition of Lemma 1. The nominal size was taken as 0.05 and all simulation 
settings were carried out with 1,000 replications.

For testing Ω = (ω j1j2 ) being diagonal, we considered the homogeneous variance case where 
ω jj = 1 for all j = 1, . . . , p, and the heterogeneity case where ω jj was randomly generated from 
the uniform distribution U(a, b) for two positive constants a ≤ b. We took the distribution 
U(0.5, 2.5) for the moderate heterogeneity case and U(0.1, 5) for the high heterogeneity case, 
where the largest value is 50 times larger than the smallest value on the diagonal of Ω. We set 
ω j1j2 = 0 for j1 ≠ j2 under the null hypothesis. To evaluate power under sparse and weak signals, 
we randomly selected ma = ⌊q(1−β)⌋ elements from the upper-triangle of Ω, and set those selected 
components as ω j1 j2 = {2rω j1j1 ω j2j2 ( log q)/n}1/2 under the alternative hypothesis, where 
q = p(p − 1)/2. The sparsity parameter β and the signal strength r were ranged from β ∈ 
[0.5, 0.9] and r ∈ (0, 0.5], respectively. If the precision matrix Ω was not positively definite, we 
modified it as Ω + δIp, where δ = |λmin(Ω)| + 0.01 and λmin(Ω) is the minimal eigenvalue of Ω. 
Once generated, the precision matrix Ω was set fixed over 1,000 repetitions. The data 
X1, . . . , Xn were generated independently from N(0, Σ), where Σ = Ω−1.

Table 2 reports the empirical sizes of the proposed test (MTT2.1 and MTTcv) and the maximum 
test (Lmax-test) modified from Xia et al. (2015) for the hypothesis H0 : ω j1j2 = 0 for all j1 ≠ j2. Note 
that the L2 type test is not applicable to this hypothesis of the whole precision matrix. From 
Table 2, we notice that the proposed test with both fixed and CV selected ψ had an accurate 
size around the nominal level 5%. This verifies the asymptotic results of the proposed thresholding 
statistics under the null hypothesis in Section 5. However, the Lmax-test was conservative with em
pirical sizes around 1%–2%.

Figure 2 shows the powers of MTT2.1 with fixed ψ and the Lmax-test under n = 125 and the three 
cases of heterogeneity considered in Table 2. The results of MTTcv by CV selection of ψ were 

Table 2. Empirical sizes of the proposed MTT with fixed ψ = 2.1 (MTT2.1) and cross-validated ψ (MTTcv) for the lasso 
penalty parameter λj in (4.2), and the Lmax-test for the hypotheses H0 : ω j1 j2 = 0 for all j1 ≠ j2, under the homogeneous 
case (ω jj = 1 for all j) and two heterogeneity cases (ω jj generated from the uniform distribution U(a, b))

ω jj = 1 ω jj ∼ U(0.5, 2.5) ω jj ∼ U(0.1, 5)

n p MTT2.1 MTTcv Lmax MTT2.1 MTTcv Lmax MTT2.1 MTTcv Lmax

100 250 0.059 0.060 0.012 0.061 0.064 0.010 0.062 0.063 0.012

350 0.062 0.062 0.014 0.057 0.059 0.015 0.064 0.066 0.010

450 0.066 0.064 0.011 0.064 0.057 0.012 0.062 0.067 0.013

125 250 0.048 0.041 0.016 0.044 0.048 0.015 0.055 0.046 0.012

350 0.041 0.055 0.018 0.050 0.047 0.015 0.051 0.045 0.022

450 0.048 0.041 0.018 0.051 0.043 0.014 0.058 0.054 0.019

150 250 0.045 0.045 0.021 0.044 0.049 0.026 0.058 0.057 0.019

350 0.045 0.052 0.015 0.052 0.058 0.020 0.057 0.049 0.025

450 0.044 0.045 0.021 0.046 0.051 0.025 0.055 0.047 0.017

Note. The nominal level is 0.05.
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similar to MTT2.1, which are reported in Figure S2 in the online supplementary material. The re
sults in Table 2 and Figure S2 online supplementary material indicate that the proposed test with 
fixed ψ = 2.1 and CV selected ψ worked equally well. The results under n = 100 and 150 were simi
lar, which were omitted here. As the Lmax-test was more conservative, for a fair comparison, we 
adjusted the rejection criteria of the two tests such that their empirical sizes were 5%. To evaluate 
the performance of tests under different combinations of signal sparsity and strength, we consid
ered two scenarios. The top three panels of Figure 2 report the cases for the sparsity parameter β 
being fixed at 0.6 and the signal strength r changing from 0.1 to 0.5 with the increment 0.05. While 
the bottom panels report the cases for r = 0.3 and β increasing from 0.5 to 0.9. From Figure 2, we 
notice that the power of the proposed test was at least comparable to that of the Lmax-test. In most 
cases, MTT was more powerful. This verifies the power advantage of the proposed test as com
pared with the maximum type tests. The powers of the two tests increased (decreased) as the in
crease of r (β). This is because larger r leads to stronger signals, but larger β makes signals fewer.

For testing the hypotheses (2.1) for a subset of variables, we set the target variables as A1 = 
{1, . . . , p1} and the ancillary variables as A2 = {p1 + 1, . . . , p}. We considered two designs for 
the precision matrix Ω under the null hypothesis of (2.1): 

Design A: the identity matrix Ω = I p;
Design B: ω jj = 1 for all j = 1, . . . , p, and ω jj+p1 = 0.25 for j = 1, . . . , p − p1.

In both designs, ΩA1 = Ip1 under the null hypotheses, but there are nonzero partial correlations 
between A1 and A2 in Design B. We set the size of A1 as p1 = 10, 20 and 30. To evaluate power, 
we randomly selected ⌊q(1−β)

1 ⌋ components from the upper-diagonal of the sub-matrix ΩA1 , and set 
them as {2r( log q1)/n}1/2, where q1 = p1(p1 − 1)/2 is the number of free parameters in ΩA1 . 

(a) (b) (c)

(d) (e) (f)

Figure 2. Empirical powers of the proposed MTT with fixed ψ = 2.1 (MTT2.1) for the lasso penalty parameter λj in 
(4.2) and the Lmax-test for the hypotheses H0 : ω j1 j2 = 0 for all j1 ≠ j2 under n = 125, p = 250, 350, 450, three settings 
of {ω jj } and the nominal level 0.05. The top panels (a)–(c) are for fixed β = 0.6 and varying r from 0.1 to 0.5; the bottom 
panels (d)–(f) are for fixed r = 0.3 and varying β from 0.5 to 0.9.
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Similar as the case of testing Ω being diagonal, if Ω was not positively definite, we modified it as 
Ω + (|λmin(Ω)| + 0.01)Ip.

Table 3 reports the empirical sizes of the proposed MTT, Lmax, and L2 tests for the hypotheses 
(2.1) under Designs A and B, different combinations of n and p, and three settings of the target set 
A1. From Table 3, we see that the proposed methods MTT2.1 and MTTcv were similar and had the 
most accurate size around 5% for almost all the cases. The Lmax type test was conservative as in the 
previous setting of testing Ω being diagonal. While the L2 type test was a little liberal.

To evaluate the powers of those tests, similar to testing Ω being diagonal, we adjusted the rejec
tion criteria such that the empirical sizes of all tests were 0.05. The power curves of those tests with 
respect to different signal strength r and sparsity level β are shown in Figures 3 and 4. Here, we only 
report the power of MTT2.1 as the performance of MTTcv was quite similar to MTT2.1, which is 
reported in Figures S3 and S4 in the online supplementary material. We considered the case of 
fixed β = 0.7 and varying r, and the case of fixed r = 0.7 and varying β. Due to limited space, 
we only displayed the results under n = 125. The results under n = 100 and 150 were similar 
and were omitted.

From Figures 3 and 4, the power of the proposed MTT was higher than that of the Lmax-test 
under almost all the cases. For the high sparsity scenarios where β ≥ 0.8, those tests had similar 
powers since the number of signals under the alternative hypothesis of (2.1) are very few. This co
incides with the findings in Figure 2. The powers of MTT and the L2-test were comparable for 
p1 = 10, which represents small sub-blocks of Ω to be tested. However, when p1 was increased 
to 20 and 30, the proposed test had superior powers over the L2-test, especially for the sparsity 
level β larger than 0.6 as shown in panels (c) and (f). This is because the L2-test takes the sum 
of squares for all the estimated precision coefficients in the testing set A1, which would lose power 
if the size of A1 (p1) is large and the signals are sparse (large β), as it includes too many non- 
informative components. The overall performance of the proposed MTT was better than both 

(a) (b) (c)

(d) (e) (f)

Figure 3. Empirical powers of the proposed MTT with fixed ψ = 2.1 (MTT2.1) for the lasso penalty parameter λj in 
(4.2), the Lmax-test and the L2-test for the hypotheses (2.1) with the size of A1 being p1 = 10, 20, 30, under Design A, 
n = 125, p = 250, 350, 450 and the nominal level 0.05. The top panels (a)–(c) are for fixed β = 0.7 and varying r from 
0.5 to 1; the bottom panels (d)–(f) are for fixed r = 0.7 and varying β from 0.5 to 0.9.
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the Lmax-test and the L2-test, in terms of more accurate size control under the null hypotheses and 
higher power for detecting sparse and weak signals in precision matrices.

8 Real data analysis
It is well known that different brain regions work together for everyday activities. 
Neurodegenerative disorders, such as Alzheimer’s disease (AD), alter brain connectivity, which re
sult in impairment of memory and cognitive decline. In this section, we used an FDG-PET brain 
imaging data set to study brain connectivity for healthy individuals and AD patients. The data con
tain the readings of 42 brain anatomical volumes of interest (AVOIs) from 49 AD patients and 67 
normal control (NC) subjects. Those AVOIs are distributed in four brain regions: prefrontal, par
ietal, occipital, and temporal lobes, which contain 12, 8, 6, and 16 AVOIs, respectively.

Using this data set, Huang et al. (2010) and Qiu and Zhou (2020) studied the brain functional 
connectivity by estimating the precision coefficients among those 42 AVOIs and treated two 
AVOIs being connected if their precision coefficient is nonzero. In those studies, the precision co
efficient shows the conditional association between two AVOIs after removing the linear effects of 
other AVOIs, which serves as a measure for conditional dependence between brain AVOIs. Let 
ΩAD = (ωAD,j1j2 ) and ΩNC = (ωNC,j1j2 ) be the precision matrices of the 42 AVOIs for the AD and 
NC groups, respectively. Let A1, . . . , A4 denote the index sets of AVOIs corresponding to the 
four brain regions. Let ΩAD,k1k2 

and ΩNC,k1k2 
be the sub-matrices of ΩAD and ΩNC with elements 

from Ak1
×Ak2

. For the AD group, we were interested in testing the hypotheses

Hk,0 : ωAD,j1j2 = 0 for all j1, j2 ∈ Ak and j1 ≠ j2 vs. Hk,a : not Hk,0 (8.1) 

for k1 = k2 = k ∈ {1, . . . , 4}, and the hypotheses

(a) (b) (c)

(d) (e) (f)

Figure 4. Empirical powers of the proposed MTT with fixed ψ = 2.1 (MTT2.1) for the lasso penalty parameter λj in 
(4.2), the Lmax-test and the L2-test for the hypotheses (2.1) with the size of A1 being p1 = 10, 20, 30, under Design B, 
n = 125, p = 250, 350, 450 and the nominal level 0.05. The top panels (a)–(c) are for fixed β = 0.7 and varying r from 
0.5 to 1; the bottom panels (d)–(f) are for fixed r = 0.7 and varying β from 0.5 to 0.9.
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Hk1k2,0 : ΩAD,k1k2
= 0 vs. Hk1k2,a : ΩAD,k1k2

≠ 0 (8.2) 

for k1 ≠ k2 ∈ {1, . . . , 4}. Similar hypotheses were considered for the NC group as well. Note that 
the proposed thresholding procedure can be applied for testing the non-diagonal sub-blocks 
ΩAD,k1k2 

for k1 ≠ k2. See the discussion in the first paragraph of Section 9 for details. Those 
two hypotheses were used to investigate whether any connection within one brain region or 
between two brain regions existed.

We applied three methods, MTT with fixed ψ = 2.1, the Lmax-test and L2-test, for the 
hypotheses (8.1) and (8.2). The p-values of those three tests are reported in Table 4, where 
‘prefrontal–prefrontal’ represents the hypotheses (8.1) for the prefrontal region, and ‘prefront
al–parietal’ represents the hypotheses (8.2) for testing the precision coefficients between the pre
frontal and parietal regions. As there were 10 hypotheses, to control the family-wise error rate 
at 0.05, we rejected each of the hypotheses if the corresponding p-value was less than 0.005 by 
Bonferroni correction. From Table 4, MTT and the L2-test rejected almost all the hypotheses 
for both the AD and NC groups, which implies that there existed at least one connection between 
different AVOIS within each brain region and between two brain regions. This is expected as brain 
regions should function together for healthy people. Although Alzheimer’s disease may affect 
brain connectivity, our results indicate brain connections among different regions still exist for 
AD patients. However, the Lmax-test failed to reject the hypotheses ‘prefrontal–parietal’ and ‘pre
frontal–temporal lobes’ for the AD group, and the hypotheses ‘prefrontal–temporal lobes’ for the 
NC group. This may be due to the power loss of the Lmax-test as revealed by the simulation study.

9 Discussion
This article proposes a minimax optimal test for the hypotheses (2.1) for precision coefficients of a 
sub-group of variables. It can be applied for testing cross-blocks of precision coefficients being 
zero, namely, H0 : ω j1j2 = 0 for all j1 ∈ A1 and j2 ∈ A2, where A1 and A2 are two non-overlapping 
subsets of N = {1, . . . , p}. The same multi-level thresholding test in (4.10) can be used. The only 
differences are to change q = |A1||A2| and the thresholding statistic T(t) in (4.5) to be 
T(t) =

􏽐
j1∈A1,j2∈A2

Vj1j2I{Vj1 j2 ≥ λq(t)}.
Under sub-Gaussian distributed data, the expansion of 􏽢ω j1j2 in (5.1) is still valid. However, the 

main order variance θ j1j2 = Var(ϵij1 ϵij2 )/(v2
j1j1 v2

j2j2 ) of 
��
n
√

(􏽢ω j1j2 − ω j1j2 ) is no longer equal to 
(1 + ρ2

j1 j2 )(v j1j1 v j2 j2 )−1. For non-Gaussian data, θ j1j2 can be estimated by

Table 4. P-values of the hypotheses (8.1) and (8.2) by the proposed MTT with fixed ψ = 2.1 (MTT2.1) for the lasso 
penalty parameter λj in (4.2), the Lmax-test and the L2-test for the Alzheimer’s disease and normal control groups

Alzheimer’s disease (AD) Normal control (NC)

Brain regions MTT2.1 Lmax-test L2-test MTT2.1 Lmax-test L2-test

Prefrontal–prefrontal 0 0 0 0 0 0

Prefrontal–parietal 4.49×10−9 0.073 1.32 × 10−8 0 5.51 × 10−4 3.99×10−8

Prefrontal–occipital 2.33×10−15 2.30 ×10−3 1.75×10−10 0 2.42×10−4 3.85×10−9

Prefrontal–temporal 
lobes

9.58×10−5 9.70 ×10−3 1.21×10−14 3.01×10−14 0.020 1.67×10−15

Parietal–parietal 0 1.08×10−10 0 0 1.11×10−16 0

Parietal–occipital 0 2.84×10−6 8.19×10−14 3.42×10−14 1.73×10−4 2.72×10−5

Parietal–temporal lobes 1.19×10−4 1.90 ×10−3 5.43×10−14 0.481 0.035 1.05×10−8

Occipital–occipital 0 2.22×10−16 0 0 0 0

Occipital–temporal lobes 0 1.19×10−6 1.51×10−9 0 2.92×10−7 4.11×10−15

Temporal lobes– 
temporal lobes

0 1.67×10−15 0 0 1.22×10−15 0
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􏽥θ j1 j2 =
1
n

􏽘n

i=1

(􏽢ϵij1􏽢ϵij2 −􏽢v j1j2 )2/(􏽢v2
j1j1
􏽢v2

j2j2 ), 

and the thresholding statistic is TNG(t) =
􏽐

j1,j2∈A1,j1<j2 VNG
j1j2I{V

NG
j1j2 ≥ λq(t)} where VNG

j1j2 = n􏽢ω2
j1 j2
􏽥θ−1

j1j2 

is the standardization of 􏽢ω j1j2 using 􏽥θ j1j2 . Lemma S5 in the online supplementary material shows 

that max j1,j2 |
􏽥θ j1 j2/θ j1j2 − 1| = O p{s( log p)1/2n−1/2}, and the large deviation result of VNG

j1j2 
under 

sub-Gaussian distributed data is the same as that of Vj1j2 under Gaussian data. Therefore, under 
suitable conditions, it might be shown that the asymptotic distribution of TNG(t) is the same as that 
of T(t) under the Gaussian distribution. The multi-level thresholding statistic can be constructed 
similarly as M(t0) based on TNG(t), and the rejection criterion of MTT under sub-Gaussian distrib
uted data should be the same as that in (4.10).

The proposed procedure can also be extended to test the equivalence of two precision matrices 
or their sub-blocks between two populations. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be i.i.d. samples 
from two p-dimensional Gaussian distributions with means μ1 and μ2 and covariances Σ1 and 
Σ2, respectively, where Ωk = (ωk,j1j2 ) = Σ−1

k for k = 1, 2. For a subset A1 of variables, we are inter
ested in testing whether Ω1 and Ω2 are the same in the sub-block A1 ×A1, namely, the two-sample 
hypotheses

H0 : ω1,j1j2 = ω2,j1j2 for all j1, j2 ∈ A1 vs.
Ha : ω1,j1j2 ≠ ω2,j1 j2 for some j1, j2 ∈ A1.

(9.1) 

The nodewise regression estimator in (4.3) can be applied to obtain the estimate 􏽢ωk,j1j2 
of ωk,j1 j2 , 

and the corresponding estimate 􏽢ρk,j1j2 
of the partial correlation for k = 1, 2. Let 􏽢θk,j1j2 = (1 + 

􏽢ρ2
k,j1j2

)(􏽢ωk,j1j1􏽢ωk,j2j2 ) be the estimated variance of 
��
n
√

k(􏽢ωk,j1j2 − ωk,j1j2 ). The standardized difference 
between 􏽢ω1,j1j2 and 􏽢ω2,j1j2 is

V2s,j1j2 =
(􏽢ω1,j1j2 −􏽢ω2,j1j2 )

2

􏽢θ1,j1j2/n1 +􏽢θ2,j1j2/n2

.

Let λ2s(t) = 2t log q̃ for q̃ = p1(p1 + 1)/2, where p1 = |A1|. Similar as (4.5) and (4.8), we construct 
the single-level thresholding statistic for the hypotheses (9.1) as

T2s(t) =
􏽘

(j1,j2)∈A1,j1≤j2

V2s,j1 j2I{V2s,j1 j2 > λ2s(t)}, 

and the multi-level thresholding statistic based on T2s(t) as

M2s(t̃0) = sup
t∈(t̃0,1−η]

T2s(t) − μ̃2s,0(t)
σ̃2s,0(t)

, (9.2) 

where t̃0 is the threshold lower bound, η is an arbitrarily small positive constant, and μ̃2s,0(t) = 
q̃[2λ1/2

2s (t)ϕ{λ1/2
2s (t)} + 2Φ̅{λ1/2

2s (t)}] and σ̃2
2s,0(t) = q̃[2{λ3/2

2s (t) + 3λ1/2
2s (t)}ϕ{λ1/2

2s (t)} + 6Φ̅{λ1/2
2s (t)}] are 

the main order terms of the mean and variance of T2s(t) under the null hypothesis in (9.1). 
Similar as (4.10) for the one sample case, we reject the null hypotheses of (9.1) if 
M2s(t̃0) > [qα + b{ log (q̃), t̃0, η}]/a{ log (q̃)}.
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